Liu, X., Huang, A., Ding, C., and Chu, P. K. (2006). Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Huang, H. L., Chang, Y. Y., Weng, J. C., Chen, Y. C., Lai, C. H., and Shieh, T. M. (2013). Anti-bacterial performance of zirconia coatings on titanium implants. Chen, Y., Lunsford, S. K., Song, Y., Ju, H., Falaras, P., Kontos, A. G., and Dionysiou, D. D. (2011). Synthesis, characterization and electrochemical properties of mesoporous zirconia nanomaterials prepared by self-assembling sol-gel method with Tween 20 as a template. Feng, L., Gai, S., He, F., Dai, Y., Zhong, C., Yang, P., and Lin, J. (2017). Multifunctional mesoporous ZrO2 encapsulated up-conversion nanoparticles for mild NIR light activated synergistic cancer therapy. Colilla, M., Manzano, M., Izquierdo-Barba, I., Vallet-Regí, M., Boissiére, C., and Sanchez, C. (2009). Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Ferraris, M., Verne, E., Appendino, P., Moisescu, C., Krajewski, A., Ravaglioli, A., and Piancastelli, A. (2000). Coatings on zirconia for medical applications. Hang, C., Li, Q., Gao, S., and Shang, J. K. (2011). As (III) and As (V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment.
Liang, J., Deng, Z., Jiang, X., Li, F., and Li, Y. (2002). Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Manicone, P. F., Iommetti, P. R. If you adored this article so you would like to acquire more info pertaining to zirconia dental please visit our web-page. , and Raffaelli, L. (2007). An overview of zirconia ceramics: basic pro-perties and clinical applications. Joo, J., Yu, T., Kim, Y. W., Park, H. M., Wu, F., Zhang, J. Z., and Hyeon, T. (2003). Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. Davidson, R., Kolb, B., Anderson, D., Higgins, J., Hendrickson, M., and Brady, J. (2006). Patente USA. Guel, M. L. A., Jiménez, L. D., and Hernández, D. A. C. (2017). Ultrasound-assisted sol-gel synthesis of ZrO2. Nakonieczny, D. S., Ziębowicz, A., Paszenda, Z. K., and Krawczyk, C. (2017). Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications-A review. Meskin, P. E., Ivanov, V. K., Barantchikov, A. E., Churagulov, B. R., and Tretyakov, Y. D. (2006). Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5 Zn0.5 Fe2O4 powders.
Gubanova, N. N., Kopitsa, G. P., Ezdakova, K. V., Baranchikov, A. Y., Angelov, B., Feoktystov, A., and Ivanov, V. K. (2014). Structure of zirconium dioxide based porous glasses. Lyubushkin, R. A., Sirota, V. V., and Ivanov, O. N. (2011). Fabrication and properties of zirconium ceramic from zirconium dioxide nanopowder. Panova, T. I., Morozova, L. V., Drozdova, I. A., and Shilova, O. A. (2011). Sol-gel synthesis of solid solutions based on zirconium and hafnium dioxides. Chepurna, I., Smotraev, R., Kanibolotsky, V., and Strelko, V. (2011). Colloidal and chemical aspects of nanosized hydrated zirconium dioxide synthesized via a sol-gel process. Mohammadi, M. R. and Fray, D. J. (2011). Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties. Meng, L. Y., Wang, B., Ma, M. G., and Lin, K. L. (2016). The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Cervantes, A. L., Galaviz, A. A., Aceves, C. y Fonseca, C. G. (2016). Diseño, fabricación y evaluación clínica de implantes trans-endodónticos de óxido de zirconio.
Pei, L., Xie, Y., Pei, Y., and Yuan, C. (2013). Synthesis and formation process of zirconium dioxide nanorods. Nikiforov, S. V., zirconia dental Kortov, V. S., Savushkin, D. L., Vokhmintsev, A. S., and Weinstein, I. A. (2017). Thermal quenching of luminescence in nanostructured monoclinic zirconium dioxide. Penkina, T. N. (2017). Low-temperature aging of ceramic on the basis of tetragonal zirconium dioxide stabilized by cations of yttrium and ytterbium. Una de las principales ventajas del disilicato de litio es su alta resistencia a la fractura. La zirconia es conocida por su alta resistencia y durabilidad, lo que la hace ideal para restauraciones en molares y premolares. Cemento de resina: Es un cemento de dos componentes que ofrece alta resistencia y una excelente adhesión. Respuesta: La zirconia es ideal para restauraciones dentales en muelas y dientes posteriores, ya que ofrece una mayor resistencia a la carga masticatoria. ¿Cómo elegir el cemento ideal? Recuerda siempre seleccionar el cemento adecuado y seguir cuidadosamente las instrucciones del fabricante para obtener los mejores resultados. Es una unión química producida a través de una capa que se forma entre la superficie del hueso y la superficie del implante. Finalmente, una vez que el cemento esté curado, es hora de terminar y pulir la corona.