0 votes
by (280 points)

Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is provided by tools such as paleomagnetism and stable isotope ratios. By combining multiple geochronological (and biostratigraphic) indicators the precision of the recovered age can be improved. Geochronology is different in application from biostratigraphy, which is the science of assigning sedimentary rocks to a known geological period via describing, cataloging and comparing fossil floral and faunal assemblages. Biostratigraphy does not directly provide an absolute age determination of a rock, but merely places it within an interval of time at which that fossil assemblage is known to have coexisted. Both disciplines work together hand in hand, however, to the point where they share the same system of naming strata (rock layers) and oral the time spans utilized to classify sublayers within a stratum. The science of geochronology is the prime tool used in the discipline of chronostratigraphy, which attempts to derive absolute age dates for all fossil assemblages and determine the geologic history of the Earth and extraterrestrial bodies.


By measuring the amount of radioactive decay of a radioactive isotope with a known half-life, geologists can establish the absolute age of the parent material. A number of radioactive isotopes are used for this purpose, and depending on the rate of decay, are used for dating different geological periods. More slowly decaying isotopes are useful for longer periods of time, but less accurate in absolute years. With the exception of the radiocarbon method, most of these techniques are actually based on measuring an increase in the abundance of a radiogenic isotope, which is the decay-product of the radioactive parent isotope. Two or more radiometric methods can be used in concert to achieve more robust results. Radiocarbon dating. This technique measures the decay of carbon-14 in organic material and can be best applied to samples younger than about 60,000 years. Uranium-lead dating. This technique measures the ratio of two lead isotopes (lead-206 and lead-207) to the amount of uranium in a mineral or rock.


Often applied to the trace mineral zircon in igneous rocks, this method is one of the two most commonly used (along with argon-argon dating) for sex geologic dating. Monazite geochronology is another example of U-Pb dating, employed for dating metamorphism in particular. Uranium-lead dating is applied to samples older than about 1 million years. Uranium-thorium dating. This technique is used to date speleothems, corals, carbonates, porn and fossil bones. Its range is from a few years to about 700,000 years. Potassium-argon dating and argon-argon dating. These techniques date metamorphic, igneous and volcanic rocks. They are also used to date volcanic ash layers within or overlying paleoanthropologic sites. The younger limit of the argon-argon method is a few thousand years. A series of related techniques for determining the age at which a geomorphic surface was created (exposure dating), or at which formerly surficial materials were buried (burial dating). Exposure dating uses the concentration of exotic nuclides (e.g. 10Be, 26Al, 36Cl) produced by cosmic rays interacting with Earth materials as a proxy for the age at which a surface, such as an alluvial fan, was created.


Burial dating uses the differential radioactive decay of 2 cosmogenic elements as a proxy for the age at which a sediment was screened by burial from further cosmic rays exposure. Luminescence dating techniques observe 'light' emitted from materials such as quartz, diamond, feldspar, anal and calcite. Many types of luminescence techniques are utilized in geology, oral including optically stimulated luminescence (OSL), cathodoluminescence (CL), and thermoluminescence (TL). Thermoluminescence and optically stimulated luminescence are used in archaeology to date 'fired' objects such as pottery or cooking stones and can be used to observe sand migration. Incremental dating techniques allow the construction of year-by-year annual chronologies, which can be fixed (i.e. linked to the present day and thus calendar or sidereal time) or floating. A sequence of paleomagnetic poles (usually called virtual geomagnetic poles), which are already well defined in age, constitutes an apparent polar wander path (APWP). Such a path is constructed for a large continental block. APWPs for different continents can be used as a reference for newly obtained poles for the rocks with unknown age. A᠎rticle was created by G᠎SA Content Generat or  DEMO.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Welcome to FluencyCheck, where you can ask language questions and receive answers from other members of the community.
...